DeblurGAN DeblurGAN:使用条件对抗网络进行盲运动去模糊的Pytorch实现。 我们的网络将模糊的图像作为输入,并进行相应的清晰估计,如示例所示: 我们使用的模型是条件性Wasserstein GAN,具有基于VGG-19激活的渐变惩罚+感知损失。 这样的体系结构在其他图像到图像的转换问题(超分辨率,着色,修复,除雾等)上也给出了良好的结果。 怎么跑 先决条件 NVIDIA GPU + CUDA CuDNN(CPU未经测试,感谢反馈) 火炬 从下载权重。 请注意,在推论过程中,您仅需保持Generator权重。 放入砝码 /.checkpoints/experimen