提出一种基于图像分割的稠密立体匹配算法,该算法将灰度-梯度算法与零均值归一化互相关(ZNCC)算法相结合生成匹配代价,利用SLIC(Simple Liner Iterative Cluster)算法对图像进行分割,基于视差图和超像素更新了匹配代价。在视差后处理阶段,基于左右一致性检验(LRC)、孔洞填充和十字交叉自适应窗口加权中值滤波的方法减小视差图的误匹配率。利用Middlebury数据集的4组图像进行测试,测试结果表明,平均误匹配率为4.99%。