基于注意力机制的多目标优化高光谱波段选择
神经网络的注意力机制可以从数据中提取关键信息,将这一特性运用在高光谱波段选择上有助于充分学习波段之间的相互依赖和非线性关系,提取更重要的波段。提出了一种基于注意力机制的多目标优化高光谱波段选择算法。首先,利用注意力模块和自编码器构建网络;然后,将一维光谱数据作为网络输入,采用两种损失函数并结合多目标优化方法对输入数据进行训练,使嵌入在网络中的注意力模块充分学习各波段之间的非线性关系,对信息量大和易于分类的波段赋予更大的权重,以实现波段选择;最后,利用支持向量机分类器和平均光谱散度验证波段子集的性能。实验结果表明:相比于其他算法,所提算法在Botswana与Indian Pines数据集上提取的
暂无评论