生成对抗网络(GAN)是解决图像数据获取困难的有效方法,但GAN在训练时难以稳定,生成的图像质量较差。基于此,提出了一种基于残差结构的改进深度卷积GAN图像生成方法。采用残差结构加深网络并结合图像标签信息,以获取真实图像样本的深层次特征,在判别器模型中引入谱约束,提高网络的训练稳定性,从而实现图像数据的有效生成。实验表明,所提方法在生成图像的视觉效果和客观评价上具有更优异的表现。