针对传统局部二进制模式(LBP)存在的固有缺陷,即小尺度LBP算子无法反应人脸图像的宏观特征,大尺度LBP算子特征维数通常很高,提出一种局部多尺度多分辨率二进制模式(LMSRBP)的人脸表示算法。通过使用高斯金字塔得到一系列不同尺度不同分辨率的人脸图像,然后对这些图像使用同种LBP算子得到LMSRBP特征谱。该方法在不改变特征维数的情况下,能同时提取出图像的微观和宏观特征。在分类器设计方面,考虑不同面部区域对识别贡献不同的问题,提出软直方图交方法构建多弱分类器,最后集成所有弱分类器得到识别结果。在YaleB,ORL标准人脸库上的实验结果表明,该改进算法能显著提高人脸识别率。