一种新的差分进化约束优化算法
对于约束优化问题,目前提出的差分进化算法大多采用罚函数法,但此方法对罚参数有很强的依赖性.基于此,把约束优化问题中的约束条件当作一个目标函数,从而把约束优化问题转化为有两个目标函数的多目标优化问题.借鉴多目标优化中的Pareto的概念,对种群中的个体规定等级,便于在优胜劣汰过程中确定选择概率.同时,在算法陷入局部最优时,采用一种不可行解替换机制来提高算法搜索能力.对13个标准测试问题的测试结果表明,与动态惩罚函数的进化算法、可行性规则的差分进化算法、采用随机排序的进化策略以及人工免疫响应约束进化策略相比,新算法在求解精度上均具有一定的优势.
暂无评论