无迹卡尔曼滤波(UKF)被广泛应用于工程实际中,但传统UKF在滤波过程进行无迹变换(UT)时的待选参数为固定值,这会带来一定误差.为了获取最优的待选参数,提出基于和声差分进化(HSDE)的UKF改进算法,并在目标跟踪中对该算法进行应用.和声差分进化算法对待选参数kappa进行最优选择,跳出局部最优的现象还有很强的收敛性,通过改进可进一步提高UKF算法滤波精度.Matlab仿真结果表明,基于和声差分进化的UKF改进算法精度更高.