<p class="MsoNormal"><span style="font-family:宋体;font-size:9pt;">压缩传感理论将信号的采样与压缩同时进行,利用信号在变换基上可以稀疏表示的先验知识,从比香农采样少的多的观测值中重构原始信号。</span><span style="font-family:宋体;font-size:9pt;">近年来,两步迭代阈值算法作为一种求解反问题的优化方法,因其与多尺度几何分析存在紧密联系,且算法参数少,思想比较简单等特点,已经应用到了压缩重构中。但其使用时域的软硬阈值算子,不能获得很好的图像稀疏表示,从而使得算法重构精度不高。针对上述问题,本文在研究两步迭代阈值算法的基础上,提出了一种自适应的两步迭代阈值算法。该算法利用当前估计值提供的信息自适应估计步长参数,保证了估计值向最优解方向移动,提高了算法的重构精度,且针对其稀疏表示信号能力不足的缺点,运用高斯混合尺度模型对曲波邻域系数进行建模,充分利用曲波变换平移不变性和多方向选择性