暂无评论
针对量子粒子群优化算法存在早熟收敛的问题,提出一种基于Logistics混沌映射变异的多种群量子粒子群优化算法(CMQPSO),采用分段Logistics混沌映射生成初始粒子群,根据适应度值将群体分为
首先分析粮食仓库选址的原则和影响因素等,研究建立了粮库选址模型;进而考虑带障碍约束条件,采用量子粒子群优化的空间聚类分析方法,解决了粮库选址问题;最后,以河南省粮库选址为实例进行了模型验证。实验表明,
分析了量子行为粒子群优化算法,着重研究了算法中群体粒子的搜索行为,对算法中局部吸引点进行了分析,提出针对粒子在搜索过程中所处的不同搜索环境,将粒子的搜索行为分为四种类型,并能够自适应地学习优化问题环境
针对量子粒子群优化算法(QPSO)存在着保持种群多样性差、容易陷入局部最优等缺陷,将耗散操作算子引入到QPSO量子角度更新中,提出了改进的耗散量子粒子群优化算法(DQPSO)。为验证算法的有效性,将D
本文提供基于梯度下降的RBF神经网络的MATLAB代码,并内附Exel数据集,其中8000组数据为训练集,剩余数据为测试集。该神经网络采用有监督学习方式,包括梯度下降优化中心向量C、宽度D、权值W等。
基于遗传算法和粒子群优化的神经网络软件缺陷预测
在UWB-IR信号检测中,针对目前所采用的量子粒子群FHN神经元模型易造成粒子群多样性降低,易陷入局部最优,导致求解精度不高的问题,对量子粒子群算法中量子更新参数引入混沌优化算法,提出了基于混沌量子粒
针对多服务情况下协同OFDMA(orthogonal frequency division multiple access)系统的资源分配问题,在基站和中继单独功率约束条件下,以最大化用户的效用(ut
提出了一种基于量子粒子群的改进模糊聚类图像分割算法。针对FCM图像分割算法对聚类中心初始值比较敏感的缺点,利用量子粒子群优化算法强大的全局搜索能力寻找最优解,能够有效降低图像分割算法对初始值的依赖程度
针对K-均值聚类方法受初始聚类中心影响,容易陷入局部最优解的问题,提出一种基于量子粒子群算法的聚类方法,该方法引入了动态调整量子门旋转角和量子变异操作,采用改进的变异算子,使粒子群体保持品种的多样性和
暂无评论