提出了一种基于类向量模型的中文姓名识别方法。该方法通过类向量的生成来模拟人工识别姓名的过程,采用Viterbi算法对未经切分的汉字串进行类向量标注得到类向量序列,通过检查相邻类向量中类别和向量分量的变化来最终识别出人名。该方法是完全数据驱动的,不需要姓名识别的模式和规则。通过对互联网上随机抽取的1 000篇文章进行测试,结果表明,中文姓名识别召回率为82.2%,准确率为70.3%。