提出了一种基于模板和改进的gradient vector flow(GVF)分割方法。该方法先手工建立初始化模板,利用初始化模板和分割对象的周期性线性匹配,并基于Chamfer距离寻找最佳匹配模板;把该最优模板轮廓作为改进GVF的初始轮廓,再使用改进的GVF算法分割出对象。该算法仅需建立一次初始化模板,以后具有通用性,而且对于阴影和背景影响有较好的分割效果。对加利福尼亚大学步态数据库研究显示了该方法的有效性。