针对基于模糊C均值聚类(FCM)的图像分割算法仅利用像素的灰度信息、噪声抑制不理想、算法鲁棒性不高的问题,提出了一种基于像素邻域信息约束的FCM图像分割算法。该算法在模糊目标函数中引入邻域信息约束,通过约束系数自适应调节控制邻域信息约束强度,自优化迭代更新聚类中心和聚类隶属度矩阵,使模糊目标函数收敛到最小,并利用像素最优聚类隶属度去模糊化操作实现图像分割。实验结果表明,该算法在获得较高的图像分割精度的同时,具有较强的噪声抑制能力。