网络评论短文本的细粒度情感分析是文本挖掘的研究热点,评价对象作为细粒度情感分析的基础,在识别文本过程中具有重要作用。如何充分利用上下文信息并对其进行有效表示是评价对象识别的难点所在。提出一种结合词特征与语义特征的评价对象识别方法。针对商品评论语料,使用条件随机场进行评价对象识别,在词特征、依存句法特征的基础上引入语义特征,并将各特征进行组合,以充分利用上下文信息,提高评价对象的识别准确性。在手机评论酒店评论两个数据集上进行实验,结果表明,该方法的识别准确性较高,且F值分别高达75.36%82.64%