针对量子行为粒子群优化算法中粒子搜索的盲目性以及初始聚类中心的选取对聚类结果的影响问题,提出了一种基于GA优化的QPSO聚类算法。该算法首先利用GA稳健的全局优化性能进行快速的粗略聚类,然后用GA的聚类结果初始化QPSO算法,以降低粒子群搜索的盲目性,从而提高QPSO算法的搜索效率。通过在Reuter-21578真实的文本数据集上实验,该算法在Fmeasure评价标准上获得了较高的查准率和查全率,从而验证了该聚类算法的有效性和可行性,可以在文本聚类领域推广应用。