传统的文献聚类算法根据分析文献关键词进行,忽视了文献之间的引用关系,导致了主题漂移和搜索精度不高的问题。针对引文网络中的聚类问题,受到优先情节和增长定律的启发,提出了一种基于角色划分的分层次的文献软聚类算法。首先根据文献之间的引用关系构造引用矩阵,进行结构挖掘;然后根据结构挖掘的结果为每一聚类构造聚类主题,进而进行关键词分析,精化聚类。实验结果表明,该算法能够有效地提高搜索精度和效率。