考虑到位置指纹的非线性特性,提出基于核极限学习机(KELM)的位置指纹定位方法。KELM以其快速学习的特点,同时拥有紧密的网络结构,有效解决传统定位算法离线学习时间长和鲁棒性差的问题。通过改变离线数据收集环境,采用不同Wi-Fi接入点作信号源来分析KELM算法的定位性能,实验结果表明,同等条件下与基本ELM、SVM和kNN等位置指纹定位方法相比,KELM表现出更好的定位能力。