为了有效地使用用户给定的先验信息,并从多个角度考虑图像分割问题,提出了应用于彩色图像分割的半监督多目标进化模糊聚类算法。首先,将半监督方法引入到多目标进化聚类算法中,通过使用少量的监督信息指导聚类过程;其次,将最大熵正则化引入到带有监督信息的目标函数中,使目标函数具有清晰的物理意义;最后,利用监督信息构造基于相似性度量的有效指标从非支配解集中选择一个最优解。实验结果表明,该算法与传统的多目标进化聚类算法及半监督模糊聚类算法相比具有更好的灵活性和准确性。