暂无评论
目前的文本特征生成算法一般采用加权的文本向量空间模型,该模型使用TF-IDF评价函数来计算单个特征的权值,这种算法生成的文本特征冗余度往往都比较高。针对这一问题,采用了一种基于聚类加权的文本特征生成算
目前多数l-多样性匿名算法对所有敏感属性值均作同等处理,没有考虑其敏感程度和具体分布情况,容易受到相似性攻击和偏斜性攻击;而且等价类建立时执行全域泛化处理,导致信息损失较高。提出一种基于聚类的个性化[
一种基于近似类抽样的组合聚类方法,陈新泉,,k-means聚类算法和FuzzyC-Means算法的时间复杂度,对于海量数据挖掘都还能让人接受,但聚类效果受初始化影响很大,以致结果很不稳定。�
针对传统的聚类算法存在对初始化值敏感和容易陷入局部极值等缺点,提出一种确定聚类中心数目和位置的方法。用每一个粒子表示一组聚类中心,采用云理论改造粒子群算法,从而提高粒子群算法的性能,以便搜索到更合理的
一种改进的快速聚类算法GLDBSCAN,陈晓云,祁小丽,本文在基于局部密度的空间聚类算法LDBSCAN的基础上提出了一种基于网格和SP-Tree的快速聚类算法GLDBSCAN。新算法设计了一种新的对数
针对K-means算法易受初始聚类中心影响而陷入局部最优的问题,提出一种基于萤火虫智能优化和混沌理论的FCMM算法。利用最大最小距离算法确定聚类类别值K和初始聚类中心位置,以各聚类中心为基准点,利用T
针对面向聚类的特征选择算法效率和效果无法兼顾,并且对高维数据适用度不高的问题,提出了一种基于邻域分析的加权特征选择算法ENFSA。该算法首先基于信息熵构建候选特征集,降低加权特征选择的候选特征维度,在
为了提高文本分类性能,提出一种基于受限约束范围标签传播的半监督学习算法。首先利用相似性矩阵计算得出概率转移矩阵,进而通过概率转移矩阵得出受限约束范围;然后在约束范围内利用半监督学习框架下的标签传播算法
为了克服基于实数编码和目标函数梯度信息的双链量子遗传算法存在收敛速度慢和鲁棒性较差的缺点,提出了一种自适应变步长双链量子遗传算法。建立了反映目标适应度函数变化率的数学模型;构造了反映当前搜索点处适应度
为了提高半监督分类的有效性, 提出了一种基于SOM神经网络和协同训练的半监督分类算法Co-S3OM (coordination semi-supervised SOM)。将有限的有标记样本分为无重复的
暂无评论