提出并实现了一种结合前馈型神经网络和K最近邻的文本分类算法。其中,在选取特征项时考虑到Web文本不同标签组所代表的意义和权重有所区别,采用了一种改进的TFIDF特征选择法。最后对设计的分类器进行了开放性测试,实验结果表明该分类器显著地提高了文本分类的查全率和查准率。