学习向量量化(LVQ)和泛化学习向量量化(GLVQ)算法都是采用欧氏距离作为相似性度量函数,忽视了向量各维属性的数据取值范围,从而不能区分各维属性在分类中的不同作用。针对该问题,使用一种面向特征取值范围的向量相似性度量函数,对GLVQ进行改进,提出了GLVQ-FR算法。使用视频车型分类数据进行改进型GLVQ和LVQ2.1、GLVQ、GRLVQ、GMLVQ等算法的对比实验,结果表明:GLVQ-FR算法在车型分类中具有较高的分类准确性、运算速度和真实生产环境中的可用性。