正确地识别蛋白质-二磷酸鸟苷(Guanosine Diphosphate,GDP)绑定位点对于蛋白质功能分析和药物设计有非常重要的意义。蛋白质-GDP绑定位点预测是一个典型的不平衡学习问题。直接应用传统的机器学习方法是不合适的,而且会使预测结果偏向大多数类。为了解决这个问题,在基于稀疏表示的位置特异性得分矩阵特征基础上,提出了加权下采样方法来使得样本平衡,采用支持向量机算法来预测。实验结果表明提出的方法能获得更高的预测性能。