暂无评论
深度学习理论是当下研究的热点之一。最近来自UIUC计算机助理教授Sun Ruoyu撰写一篇深度学习最优化理论和算法的综述论文,共60页257篇文献,概述了神经网络的优化算法和训练理论《Optimiza
持续学习(CL)是一种特殊的机器学习范式,它的数据分布和学习目标会随着时间的推移而改变,或者所有的训练数据和客观标准都不会立即可用。
当前自然语言处理的发展为低资源语言和领域提供了挑战和机遇。众所周知,深度神经网络需要大量的训练数据,而这些数据在资源贫乏的情况下可能无法得到。然而,也有越来越多的工作来提高低资源环境下的性能。
找到的几篇计算机综述论文.可以作为毕业论文.也是自己搜集的 赚赚积分下载东西用...
辞九迎零,我们迎来2020,到下一个十年。在2019年机器学习领域继续快速发展,元学习、迁移学习、小样本学习、深度学习理论等取得很多进展。在此,专知小编整理这一年这些研究热点主题的综述进展,共十篇,了
最新的技术进步提高了交通运输的质量。新的数据驱动方法为所有基于控制的系统(如交通、机器人、物联网和电力系统)带来了新的研究方向。
一个综合的人工智能系统应该不止能“感知”环境,还要能“推断”关系及其不确定性。深度学习在各类感知的任务中表现很不错,如图像识别,语音识别。然而概率图模型更适用于inference的工作。
构建和管理一个知识图谱需要一些努力和语义技术方面的大量经验。将这个知识图谱转化为解决问题的有用资源需要更多的努力。
会话机器理解(CMC)是会话人工智能的一个研究方向,它期望机器能够理解一个开放领域的自然语言文本,然后进行多回合对话,以回答与文本相关的问题。
近年来,从社交媒体平台、医学图像和机器人等各个领域产生和分享了大量的视觉内容。大量的内容创造和分享带来了新的挑战。特别是,对相似内容的数据库进行搜索,即基于内容的图像检索(CBIR),是一个长期存在的
暂无评论