液体电磁阀的故障诊断是保证飞行器动力系统正常工作、实现故障快速定位的重要手段。为了对液体电磁阀进行检测与诊断,提出了一种基于经验模态分解(EMD,Empirical Mode Decomposition)与邻域粗糙集相结合的新方法。首先对电磁阀的结构、故障形式、故障机理进行了分析,通过采集电磁阀正常、弹簧失效、阀芯卡滞、线圈异常、电气短路五种状态的驱动端电流信号,对不同状态的电流进行了分析。针对电流稳态长度难以控制,EMD分解获得的本征模态函数(IMF,Intrinsic Mode Function)分量的能量熵存在不一致的特点,选用电流变化率作为特征对其进行EMD分解。引入数据挖掘思想,采用