论文研究 基于遗传聚类算法的出行行为分析.pdf
针对K中心点聚类算法对分类数据聚类的有效性和遗传算法良好的自组织、自适应和自学习能力,提出了基于遗传聚类算法的出行行为分析方法。该方法采用整数编码,用活动模式间的匹配度度量模式对象之间的相异度,以各活动模式与最近聚类中心点之间相异度的总和为适应度函数,探讨了K中心聚类与遗传算法相结合完成分类对象聚类分析的方法;通过算法在不同数据量和不同参数设定下仿真结果的比较,提出了关键参数的推荐值。研究表明,新方法不仅能很好地解决孤立点和局部最优的问题,同时还提高了算法的收敛速度,降低了计算成本,能很好地解决分类数据的
暂无评论