为了适应湿地遥感影像分类,选择了湿地影像的典型特征,提出了一种组合多分类器的湿地遥感分类方法。提取湿地遥感影像的独立分量、纹理、湖泊透明度、归一化水体指数、绿度指数和湿度分量特征;选择样本对最小欧氏距离、光谱夹角填图、贝叶斯和支持向量机分类器进行训练学习。根据各分类器的混淆矩阵对其赋权值,检验样本是否满足正态分布;根据权值和假设检验结果构建组合分类器决策网络。实验表明该方法较传统湿地分类方法具有更好的性能和更高的精度。