针对带噪声数据的聚类问题,提出一种基于上下文约束的噪声模糊聚类算法。该算法基于标准的模糊C-均值聚类理论,在修改模糊聚类目标函数的同时,结合问题的实际背景引入上下文模糊集,修改模糊划分空间的约束条件,以减少噪声对聚类结果的影响。实验结果表明:该算法能够有效地避免噪声对聚类的影响,具有很强的鲁棒性。