为解决粒子滤波SLAM中存在的计算效率高及粒子退化造成的估计精度低等问题, 结合精确稀疏滞后状态信息滤波估计精度高以及精确稀疏扩展信息滤波计算效率高的优点, 将两者混合应用于粒子滤波SLAM算法中, 不但在保证计算效率的条件下提高了状态估计精度, 并且还克服了机器人转动状态以及环境特征疏密带来的应用缺陷。实验结果表明了该方法的有效性与可行性。