论文研究 基于关键区域的二值化场景特征快速提取方法.pdf
近年来,驾驶辅助系统中基于视频信息的车辆定位技术受到广泛关注。针对轻轨系统高精度场景匹配中场景相似度过高导致定位困难的问题,提出了一种关键区域及二值化特征提取方法。该方法以离线处理的方式在高相似度的参考序列帧内提取具有显著性信息的关键区域,并在这些区域中生成二值化特征描述符以提高实时场景匹配的速度与准确率。在香港轻轨数据集以及公开的Nordland数据集中,相对于局部场景特征,基于提出的关键区域特征的场景匹配方法错误偏差下降31.43%,同时节约了94.22%的匹配时间;与SeqSLAM场景跟踪算法相比,在不显著增加运行时间的前提下,基于关键区域二值化场景特征的场景跟踪正确率提高了9.84%。
暂无评论