为增加信号重构的可信度和减少重构过程的人为干预,采用贝叶斯压缩感知的方法,将待重构信号赋予先验分布,不仅重构出信号参数,并能同时获得信号参数的置信区间,以此实时调整重构模型使信号恢复达到最佳。基于拉普拉斯分级先验模型的贝叶斯压缩感知算法,对图像进行合理分块,用不同比率对分块图像压缩,并在重构过程进行分级处理,进一步减少运算时间,最终使用相关向量机(RVM)实现了稀疏信号的最大后验概率估计。实验结果表明,通过和传统算法相比较,上述算法使得重构图像质量得到明显提高,并且相比于全局贝叶斯压缩感知算法具有更好的实时性。
暂无评论