在过去的几年里,基于深度学习的方法在图像理解问题上取得了令人印象深刻的效果,如图像分类、目标检测或语义分割。然而,真实字计算机视觉应用程序通常需要模型能够(a)通过很少的注释例子学习,(b)不断适应新的数据而不忘记之前的知识。不幸的是,经典的监督深度学习方法在设计时并没有考虑到这些需求。