为了进一步提高多目标粒子群优化算法的收敛性和多样性,提出一种多策略改进的多目标粒子群优化算法.建立具有精英粒子领导的异构更新模式并设置个体学习增强因子项,促使种群能够快速寻找真实Pareto最优解.引入外部档案冗余机制,利用其变异及对种群的干扰策略增强解的多样性,避免算法早熟现象的发生.仿真实验结果表明,与其他几种优化算法相比,所提出的算法表现出较好的收敛性和多样性.