在自适应带宽均值移动算法的基础上, 引入粒子滤波, 提出一种新的目标跟踪方法. 该方法通过更新带宽矩阵以适应目标尺度的变化; 采用加权和方法融合定位检测结果, 使跟踪不易陷入局部最优状态; 对粒子进行收敛采样, 维持粒子多样性, 减小累积误差; 提出一种目标扩展搜索策略, 用于目标丢失后重新搜索跟踪目标. 实验结果表明, 所提出的跟踪方法在复杂场景中表现出了较好的鲁棒性, 且跟踪轨迹平滑.