针对一类多输入多输出(MIMO) 仿射非线性动态系统, 提出一种基于极限学习机(ELM) 的鲁棒自适应神经控制方法. ELM随机确定单隐层前馈网络(SLFNs) 的隐含层参数, 仅需调整网络的输出权值, 能以极快的学习速度获得良好的推广性. 在所提出的控制方法中, 利用ELM逼近系统的未知非线性项, 针对ELM网络的权值、逼近误差及外界扰动的未知上界值分别设计参数自适应律, 通过Lyapunov 稳定性分析可以保证闭环系统所有信号半全局最终一致有界. 仿真结果表明了该控制方法的有效性.