提出一种基于随机黑洞粒子群算法(RBH-PSO) 和逐步淘汰策略的多目标粒子群优化(MRBHPSO-SE) 算法. 利用RBH-PSO 全局优化能力强和收敛速度快的优点逼近Pareto 最优解; 为了避免拥挤距离排序策略的缺陷, 提出逐步淘汰策略, 并将其应用到下一代粒子的选择策略中. 同时, 动态选择领导粒子, 运用动态惯性权重系数和变异操作 来增强种群全局寻优能力, 以及避免早熟收敛. 利用具有不同特点的测试函数进行验证, 结果表明, 与同类算法相比, 该算法具有较高的精度并兼顾优化解的多样性.