暂无评论
基于神经网络和遗传算法的故障诊断系统的设计经典。
针对轴承振动信号非线性、非平稳性和故障特征微弱性的特点,以及工程实际中难以获得大量故障样本的情况,提出了一种基于多尺度排列熵和支持向量机的轴承故障诊断新方法。该方法首先对轴承不同运行状态下的振动信号进
将小波包分析与距离判别分析法相结合的方法应用于滚动轴承故障诊断问题中。利用小波包分析技术提取了滚动轴承典型故障的振动加速度信号的状态特征向量,选用此特征向量作为距离判别分析模型的判别因子,以滚动轴承故
针对传统轴承故障诊断方法存在的缺陷,研究了基于经验模态分解(EMD)和包络解调相结合的诊断方法。并对该方法在本征模函数(IMF)分量选取上需要人工干预和计算量大的问题,提出了用距离测度来自动选择最优I
鉴于支持向量机在小样本数据情况下能够获得较大推广能力的特点,提出将支持向量机应用到矿用通风机的故障诊断中。利用网格搜索法对支持向量机进行参数寻优,通过多类分类方法对通风机故障进行分类,建立故障诊断模型
提出一种基于改进集成经验模态分解与隐马尔科夫模型的采煤机摇臂轴承故障诊断方法,利用基于极值点对称延拓和余弦窗函数的改进方法,减少端点效应对分解结果的影响,从而提高了信号分解的精度;然后提取每层本征模态
由非线性电力电子装置组成的电路发生故障时,故障特征信息不易提取和识别。对此提出一种基于小波包分析和Elman神经网的电力电子装置故障诊断的方法,先运用小波包分析法提取电路在不同故障状态下电压及电流信号
介绍一种将小波去噪与多尺度熵方法相结合的滚动轴承故障诊断方法,通过采用小波去噪后信号进行多尺度熵分析,得到多尺度熵曲线分布,对滚动轴承的正常状态、内圈故障、滚动体故障和外圈故障4种故障类型下的振动信号
对齿轮箱故障诊断特点和方法进行分析,举例介绍了小波变换在齿轮箱故障诊断中的应用。利用小波变换对齿轮箱工况信号进行分解,重构以及提取细节信号包络谱,快速准确判断出齿轮箱设备运行状态是否异常,并利用BP神
针对仅以油中溶解气体数据为主要依据的变压器故障诊断方法信息量不足以及传统证据理论的缺陷问题,研究了基于信息融合和多分类相关向量机(M-RVM)的变压器故障诊断模型。首先,将油中溶解气体分析数据与电气试
暂无评论