基于多层深度卷积特征的抗遮挡实时跟踪算法
为提高复杂场景中目标跟踪算法的准确性与实时性,提出一种基于多层深度卷积特征的抗遮挡实时目标跟踪算法。针对目标跟踪任务,先对深度卷积网络VGG-Net-19进行微调,再提取目标区域的多层深度卷积特征。根据相关滤波框架构建位置相关滤波器,确定目标中心位置。设计尺度相关滤波器对目标区域进行不同尺度采样,确定目标尺度。目标遮挡时,采用阶段性评估策略进行模型更新与恢复,解决模型误差积累问题。选取目标跟踪评估数据集OTB-2015(100组视频序列)与UAV123(123组视频序列)进行测试。实验结果表明,本文算法具有更高的准确性,能够适应目标遮挡、外观变化及背景干扰等复杂情况,平均速度为29.6 fra
暂无评论