基于人工神经网络和遗传算法的激光器参数全局优化方法
提出了一种新颖的基于人工神经网络(ANN)和遗传算法(GA)的激光器参数全局优化方法,建立激光器输出功率的人工神经网络模型,来模拟激光器参数对输出功率的综合影响机理,进而以该模型作为目标函数,采用遗传算法对激光器参数进行全局优化。以平凹腔单横模氦氖激光器为例验证了该方法的可行性和有效性。对相同参数的激光器,人工神经网络模型的仿真数据与实验数据的均方根误差为0.0127 mW。应用该方法对其他参数全局优化后激光器预期输出功率比实验室已有的同等尺寸的激光器大,说明了该方法的有效性。
暂无评论