暂无评论
通过研究电力负荷预测中支持向量机的参数优化问题,将改进后新的粒子群算法导入支持向量机参数中,从而建立一种新的电力负荷预测模型(IPSO-SVM)。首先将支持向量机参数编码为粒子初始位置向量,然后通过对
提出一种用于支持向量回归的网络优化策略.学习策略分为两个阶段:首先训练支持向量机, 得到支持向量回归的初始结构和参数,构造一个无阈值的支持向量回归网络;然后通过带有遗忘因子的递归最小二乘算法, 优化计
一种新的模糊支持向量机,对模糊支持向量机做出介绍
考虑气象因素对负荷的影响,提出了一种模糊支持向量机SVM(Support Vector Machine)的短期负荷预测方法。首先选取预测日前4星期中差异评价函数小于给定经验值的已知日作为相似日学习样本
母线负荷预测的一种实用算法及其应用,朱永祥,丁晓群,母线负荷预测是安排日前发电计划和检修计划,对计划进行安全校核的基础性工作,本文提出的考虑机组检修、小机组处理等因素母线负�
针对半监督支持向量机在采用间隔最大化思想对有标签样本和无标签样本进行分类时面临的非凸优化问题,提出了一种采用分布估计算法进行半监督支持向量机优化的方法EDA_S3VM。该方法把无标签样本的标签作为需要
一种新的支持向量回归预测模型,提出一种新的模型
基于类中心设计隶属度函数的模糊支持向量机能有效地解决支持向量机对噪声或孤立点敏感度高的问题,但是,由于它对支持向量赋予较小的隶属度,从而降低了其分类作用。基于此,提出一种新的隶属度函数设计方法;同时,
为了改善差分灰狼预测算法的早熟收敛、搜索能力不均衡、容易陷入局部最优等问题,提出了一种改进的混合灰狼优化(HGWO)预测算法,可自适应改进和调整差分进化中的变异算子、交叉算子和变异策略。嵌入具有分类预
提出了基于独立分量分析进行特征提取和采用模糊支持向量机实现分类的人脸识别新方法。首先利用独立分量分析方法构造人脸的特征脸空间,在特征脸空间上运用模糊支持向量机进行分类识别。在ORL人脸数据库的仿真结果
暂无评论