本文研究了粒子群算法在综合能源优化调度中的改进方法。首先,针对传统粒子群算法在解决多目标优化问题时存在的问题,提出了一种改进的粒子群算法。该算法通过引入非劣解集合和多目标权重分配原则,实现了在综合能源优化调度中多目标的协调处理。其次,针对粒子群算法收敛速度慢的问题,提出了一种自适应加权策略。通过在粒子群算法的迭代过程中动态调整粒子速度和位置的权重,提高了算法的搜索效率和优化结果。实验结果表明,该改进算法在解决综合能源优化调度问题上具有更好的性能和鲁棒性。
暂无评论
针对基本人工鱼群算法(AFSA)收敛速度较慢、精度较低和粒子群易陷于局部的缺点,提出了混沌协同人工鱼粒子群混合算法(CCAFSAPSO)。该算法采取AFSA、PSO的全局并行搜索与模拟退火算法(SA)
我们建立了一个基于粒子群算法的多形式能源系统优化调度模型,系统包含冷、热、电和气四种形式的能源。主要设备包括燃气锅炉、电锅炉、P2G、储能设备、风光机组、大电网和吸收式制冷机。为了更全面地评估系统性能
为了有效提高粒子群优化算法的收敛速度和搜索精度,增强算法跳出局部最优,寻得全局最优的能力,提出了一种改进的简化粒子群优化算法。该算法考虑了粒子惯性、个体经验和全局经验对于位置更新影响力的不同,改进了位
基于改进粒子群算法的SVR参数优化选择,梁瑞鑫,穆朝絮,支持向量机的学习性能和泛化能力取决于其相关参数的选取。支持向量机参数的选取在实际应用中是很复杂的,使用传统优化方法比较难
基于改进的粒子群优化算法求解TSP问题,沐爱勤,张瑞平,粒子群优化算法是一种新型的优化算法,主要应用于连续优化问题,本文通过引入移动算子和移动序的概念,使粒子群优化算法能够处理
为了实现WSN覆盖范围的最大化,延长网络寿命,在标准粒子群算法的基础上提出了一种无线传感器网络覆盖优化策略。通过粒子分簇并行搜索,采取碰撞理论使陷入局部最优的粒子迅速跳出,有效地避免了标准粒子群算法容
提出一种新的约束优化粒子群算法。该算法采用非固定多段映射罚函数法处理约束条件。在进化过程中,利用混沌序列初始化种群,选取最优粒子进行局部一维搜索,增强了在最优点附近的局部搜索能力,以加快算法的收敛速度
从论域中各个元素之间所具有的客观关系出发,利用集值映射的原理在论域上得到一个覆盖,构造了一种新的覆盖粗糙集模型;研究了与之相关的基本性质,并将其与现有的5种主要的覆盖粗糙集模型进行比较研究。为如何根据
为了改善粒子群优化算法的收敛速度,在布朗运动和伊藤过程的启示下,提出了一种混合布朗运动和粒子群优化算法这两种思想的改进算法。通过对布朗运动和伊藤过程进行抽象,设计了漂移算子和波动算子。漂移算子保留了粒
提出了一种高效的改进的粒子群优化策略,把整个群体分为几个子群体,进行子群体的专业化社会分工与信息交换,该策略在提高算法局部搜索能力的同时也兼顾了全局搜索能力。测试表明,与现有方法比较,该方法全局寻优的
暂无评论