Harris是一种高效的角点检测算法,但不具备尺度不变性。SURF(speeded-uprobustfeatures)算法虽然能很好地解决图像尺度变化问题,但是在特征点提取方面没有Harris稳定。针对Harris和SURF两种算法的特点,提出一种新的Harris-SURF特征点提取算法。首先用Harris算法检测图像角点,再用SURF算法提取图像特征点;然后合并角点和特征点,并剔除重复点获得新的特征点集,确定新特征点的主方向并生成特征描述符,再对图像使用比值法进行初匹配;最后利用RANSAC剔除错误匹配点实现精确匹配。实验结果表明,该算法对图像存在旋转、缩放、光照及噪声变化有较强的鲁棒性,同时提高了运行效率。