<html dir="ltr"><head><title></title&
第 21卷第 22期 系 统 仿 真 学 报 ? V ol. 21 No. 22 2009年 11月 Journal of System Simulation Nov, 2009 ? 7061 ? 基
针对目前多目标粒子群优化算法的收敛性能和非劣解的多样性不能同时得到满足等缺陷,提出一种基于多策略的多目标粒子群优化算法(Multi-ObjectiveParticleSwarmOptimization
为解决多目标粒子群优化算法存在解的多样性差、分布不均等问题,提出一种混合择优机制:在迭代过程中每个粒子依概率,根据解集信息熵或Sigma值确定其全局极值;并直接对解集进行基于信息熵的克隆选择,根据支配
综合能源系统是一个复杂的系统,需要考虑经济性和环保性等多种因素。多目标粒子群算法的原理和应用,以此为基础对现有的冷热电联供型综合能源系统进行优化,实现系统的经济性和环保性的双重目标。同时也介绍了优化后
为了改善粒子群多目标优化算法的分布性,引入了聚集密度以进行精英集的更新。其基本思想为:计算群体中每个个体的聚集密度,根据目标函数值和聚集密度定义一个偏序集,采用比例选择原则依次从偏序集中选择个体,更新
针对多目标粒子群算法多样性较差,种群选择压力随着变量维度增加的问题,提出了基于动态邻居维度学习的多目标粒子群算法(DNDL-MOPSO)。该算法首先构建最优维度个体,然后在“个体认知”和“社会认知”的
网格环境的特点是开放性和动态性,网格资源、用户和管理策略都可能随着时间动态地发生变化,因此,需要重点解决网格工作流调度系统中的多目标优化问题。将多目标粒子群优化算法应用于求解网格工作流调度中的多目标优
该模型综合考虑运行成本与环境保护成本,以改进的粒子群算法进行求解,可有效降低用电成本和环境污染,促进微电网优化运行。
为提高多目标优化算法的收敛性和多样性, 提出一种基于多层次信息交互的多目标粒子群优化算法. 在该算法中, 整个优化过程可分为标准粒子群优化层、粒子进化与学习层和档案信息交换层3 个层次. 粒子进化与学
用户评论