论文研究 基于一种新的正交优化的群智能优化算法.pdf
目前的智能优化算法易陷入本地最优平衡态,并且进化后期的效率低下。为了克服这些缺陷,提出了一种基于正交优化的群智能优化算法。该算法突破了以往正交设计方法仅能用在粒子群初始化和进化前优化搜索过程的局限,基于方差分析和方差比例分析,证实了正交设计方法进一步的搜索方向和范围。使用正交设计的特征在一次阵列计算中寻找包含最优值的间隔,算法可以在优化搜索过程中循环进行方差比例分析。对六峰值驼背函数的仿真分析结果说明,正交智能优化算法相比目前的智能优化算法,计算量更低,搜索时间更短,运行速度更快,且优化搜索过程的精度更高。
暂无评论