暂无评论
不完备决策系统中发现偏好概率规则的粗糙集方法,不完备信息系统下的变精度粗糙集模型及其知识约简算法
粗糙集理论被广泛应用于属性约简,复杂性是制约这些算法应用于数据挖掘任务的主要障碍,尤其是邻域模型下的约简问题.本文分析了邻域粗糙集模型的数学性质,利用正域与属性集的单调关系,构造基于属性依赖度和前向搜
基于决策理论粗糙集的区间值模糊集的三向逼近
粗糙集属性约简算法,英文资料,关于变精度属性约简算法
粗糙集约简程序属性约简的顺序如下:求正域、生成未经处理的区分矩阵、对区分矩阵进行化简、求核、对已经处理过的区分矩阵进行属性约简。约简后的决策表有26行,所有12个属性都是正域中的属性,核为空
粗糙集理论是一种新的处理模糊和不确定性知识的数学工具,在人工智能及数据挖掘等众多领域已经得到了 广泛的应用。对于不完备信息系统目前也有多种扩充方法,如基于容差关系的扩充、基于相似关系的扩充等等。该文是
粗糙集,分类器,机器学习,数据挖掘。。。
为准确及时地发现高速公路上的事故隐患,有效地减少交通延误,保障道路安全,提出了一种新的基于模糊C均值(FCM)聚类和模糊粗糙集的交通事件自动检测模型。模型分为离散化、推理规则建立和模糊推理三个步骤。在
粗糙集对于学习分析系统的属性约减模型有着重要的研究意义和使用价值。针对教育大数据高维度、不完备、增量性等现状,提出了基于不完备决策表的差别信息增量更新算法,并结合树型结构对差别信息的高效存储和粗糙集的
网络入侵方式已日趋多样化,其隐蔽性强且变异性快,开发灵活度高、适应性强的实时网络安全监测系统面临严峻挑战.对此,提出一种基于模糊粗糙集属性约简(FRS-AR)和GMM-LDA最优聚类簇特征学习(GMM
暂无评论