“监控+鞋印”是目前公安机关刑事侦查的重要技战法,其基本原理是依据犯罪现场鞋印推断嫌疑人所穿鞋型,然后到周边监控视频中检索嫌疑鞋型。针对“监控+鞋印”技战法自动化程度低下的问题,提出一种基于卷积神经网络的鞋型识别方法,实现对嫌疑鞋型的自动识别。根据鞋型识别独有特点,在DeepID的基础上设计卷积神经网络框架,并构建鞋型样本数据库(50双鞋型样本,共计160231幅图像)。运用Caffe框架结合不同网络模型对鞋型图像数据进行训练和测试,实验设计的初始网络结构由两层卷积、两层池化、两层全连接组成。实验比对了不同的第一层全连接层输出元素数目对网络性能与训练效率的影响,又在不改变输出特征图大小的情况下