提出一种新的基于客户购物模型的推荐系统框架。它把推荐过程形式化为客户购物信息的知识表达、知识推理过程。该方法首先对客户的购物历史数据进行学习, 得到贝叶斯网客户购物模型, 然后结合客户当前的购物行为, 提出并实施了一种基于概率推理的推荐算法。实验表明该算法能高效实时地为客户产生个性化的商品推荐集合, 且在覆盖率和准确率方面优于某些传统方法。